Saturday, 2025-01-18
BioInfo Pakistan
Site menu
Section categories
Related Subjects [38]
This category includes brief overview of all related subjects.
Defining BioInformatics [7]
In this section we tried to briefly explain what bioinformatics is ?
Unviersities [30]
This contains information about universities that are offering bioinformatics degree programs.
Resources [24]
Contains information about bioinformatics resources including databases, tools and techniques.
Algorithms [31]
This category includes some of the basic algorithms that are usually used by bioinformaticians.
Our poll
Pakistani Students Should Join Bio-Informatics
Total of answers: 36
Chat Box
Statistics

Total online: 1
Guests: 1
Users: 0
Home » 2009 » September » 11 » Definitions of Fields Related to Bioinformatics
1:20 AM
Definitions of Fields Related to Bioinformatics

 

Definitions of Fields Related to Bioinformatics

   Bioinformatics has various applications in research in medicine, biotechnology, agriculture etc. Following research fields has integral component of Bioinformatics

 
  1. Computational Biology:The development and application of data-analytical andtheoretical methods, mathematical modeling and computational simulation techniquesto the study of biological, behavioral, and social systems.

  2. Genomics:Genomics is any attempt to analyze or compare the entire genetic complement of a species or species (plural). It is, of course possible to compare genomes by comparing more-or-less representative subsets of genes within genomes.

  3. Proteomics:Proteomics is the study of proteins - their location, structure and function. It is the identification, characterization and quantification of all proteins involved in a particular pathway, organelle, cell, tissue, organ or organism that can be studied in concert to provide accurate and comprehensive data about that system. 

    Proteomics is the study of the function of all expressed proteins. The study of the proteome, called proteomics, now evokes not only all the proteins in any given cell, but also the set of all protein isoforms and modifications, the interactions between them, the structural description of proteins and their higher-order complexes, and for that matter almost everything 'post-genomic'."

  4. Pharmacogenomics:Pharmacogenomics is the application of genomic approaches and technologies to the identification of drug targets. In Short, pharmacogenomics is using genetic information to predict whether a drug will help make a patient well or sick. It Studies how genes influence the response of humans to drugs, from the population to the molecular level.

  5. Pharmacogenetics: Pharmacogenetics is the study of how the actions of and reactions to drugs vary with the patient's genes. All individuals respond differently to drug treatments; some positively, others with little obvious change in their conditions and yet others with side effects or allergic reactions. Much of this variation is known to have a genetic basis. Pharmacogenetics is a subset of pharmacogenomics which uses genomic/bioinformatic methods to identify genomic correlates, for example SNPs (Single Nucleotide Polymorphisms), characteristic of particular patient response profiles and use those markers to inform the administration and development of therapies. Strikingly such approaches have been used to "resurrect" drugs thought previously to be ineffective, but subsequently found to work with in subset of patients or in optimizing the doses of chemotherapy for particular patients.

  6. Cheminformatics:'The mixing of those information resources [information technology and information management] to transform data into information and information into knowledge for the intended purpose of making better decisions faster in the arena of drug lead identification and optimization.' (Frank K Brown 'Chemoinformatics: what is it and how does it impact drug discovery.' Ann. Rep. Med. Chem. 1998, 33 , 375-384.)

    Related terms of cheminformatics are chemi-informatics, chemometrics, computational chemistry, chemical informatics, chemical information management/science, and cheminformatics. 

    But we can distinguish chemoinformatics and chemical informatics as follows 

    Chemical informatics : 'Computer-assisted storage, retrieval and analysis of chemical information, from data to chemical knowledge.' ( Chem. Inf. Lett. 2003, 6 , 14.) This definition is distinct from ' Chemoinformatics ' (and the synonymous cheminformatics and chemiinformatics) which focus on drug design. 

    Chemometrics: The application of statistics to the analysis of chemical data (from organic, analytical or medicinal chemistry) and design of chemical experiments and simulations. [IUPAC Computational] 

    Computational Chemistry: A discipline using mathematical methods for the calculation of molecular properties or for the simulation of molecular behavior.  It also includes, e.g., synthesis planning, database searching, combinatorial library manipulation (Hopfinger, 1981; Ugi et al., 1990). [IUPAC Computational] 

  7. Structural genomics or structural bioinformatics refers to the analysis of macromolecular structure particularly proteins , using computational tools and theoretical frameworks. One of the goals of structural genomics is the extension of idea of genomics , to obtain accurate three-dimensional structural models for all known protein families, protein domains or protein folds . Structural alignment is a tool of structural genomics.

  8. Comparative genomics:The study of human genetics by comparisons with model organisms such as mice, the fruit fly, and the bacterium E. coli .

  9. Biophysics:The British Biophysical Society defines biophysics as: "an interdisciplinary field which applies techniques from the physical sciences to understanding biological structure and function".

  10. Biomedical informatics / Medical informatics:"Biomedical Informatics is an emerging discipline that has been defined as the study, invention, and implementation of structures and algorithms to improve communication, understanding and management of medical information."

  11. Mathematical Biology: Mathematical biology also tackles biological problems, but the methods it uses to tackle them need not be numerical and need not be implemented in software or hardware. It includes things of theoretical interest which are not necessarily algorithmic, not necessarily molecular in nature, and are not necessarily useful in analyzing collected data.

  12. Computational chemistry:Computational chemistry is the branch of theoretical chemistry whose major goals are to create efficient computer programs that calculate the properties of molecules (such as total energy, dipole moment, vibrational frequencies) and to apply these programs to concrete chemical objects. It is also sometimes used to cover the areas of overlap between computer science and chemistry.

  13. Functional genomics:Functional genomics is a field of molecular biology that is attempting to make use of the vast wealth of data produced by genome sequencing projects to describe genome function. Functional genomics uses high-throuput techniques like DNA microarrays, proteomics, metabolomics and mutation analysis to describe the function and interactions of genes.

  14. Pharmacoinformatics:Pharmacoinformatics concentrates on the aspects of bioinformatics dealing with drug discovery

  15. In silico ADME-Tox Prediction:(Brief description)-Drug discovery is a complex and risky treasure hunt to find the most efficacious molecule which do not have toxic effects but at the same time have desired pharmacokinetic profile. The hunt starts when the researchers look for the binding affinity of the molecule to its target. Huge amount of research requires to be done to come out with a molecule which has the reliable binding profile. Once the molecules have been identified, as per the traditional methodologies, the molecule is further subjected to optimization with the aim of improving efficacy. The molecules which show better binding is then evaluated for its toxicity and pharmacokinetic profiles. It is at this stage that most of the candidates fail in the race to become a successful drug.

  16. Agroinformatics / Agricultural informatics:Agroinformatics concentrates on the aspects of bioinformatics dealing with plant genomes.

  17. Systems biology: Systems biology is the coordinated study of biological systems by investigating the components of cellular networks and their interactions,by applying exprerimental high-throughput and whole-genome techniques, and integrating computational methods with experiemntal efforts.

 

Category: Related Subjects | Views: 2844 | Added by: Ansari | Rating: 0.0/0
Total comments: 0
Name *:
Email *:
Code *:
Log In

Search
Calendar
«  September 2009  »
SuMoTuWeThFrSa
  12345
6789101112
13141516171819
20212223242526
27282930
Entries archive
Site friends
Copyright MyCorp © 2025
Free website builderuCoz